A common task in computer vision applications is template matching, the search for a comparatively small image patch – or more likely, its closest approximation – in a larger image. In its simplest form, this implies solving the following optimization:
\begin{equation}(i^*, j^*) = \arg \max_{i,j} s(T, P_{i,j})
\label{eq:tm}
\end{equation}
Where the similarity metric \(s(T, P_{i,j})\) is defined between a template \(T^{m_t \times n_t}\) and all patches \(P^{m_t \times n_t}_{i,j}\) such that:
\begin{equation}P^{m_t \times n_t}_{i,j} = I[i:i+m_t,j:j+n_t]
\label{eq:p}
\end{equation}
For an image \(I^{m \times n}\) with \(m_t \ll m\) and \(n_t \ll n\) (i.e. the image is much larger than the template). A common choice of similarity metric is cosine similarity, which is defined as:
\begin{equation}cos(A, B) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\displaystyle\sum^{m,n}_{i,j} A[i,j]B[i,j]}{\sqrt{\displaystyle\sum^{m,n}_{i,j} A[i,j]^2 \displaystyle\sum^{m,n}_{i,j} B[i,j]^2}}
\label{eq:cos}
\end{equation}
Cosine similarity is a reliable metric, but as defined above its evaluation is rather costly. Combining formulas \eqref{eq:tm}, \eqref{eq:p} and \eqref{eq:cos} gives:
\begin{equation}(i^*, j^*) = \arg \max_{i,j} \frac{\displaystyle\sum^{m_t,n_t}_{i_t,j_t} T[i_t,j_t] I[i + i_t, j + j_t]}{\sqrt{\displaystyle\sum^{m_t,n_t}_{i_t,j_t} T[i_t,j_t]^2 \displaystyle\sum^{m_t,n_t}_{i_t,j_t} I[i + i_t, j + j_t]^2}}
\label{eq:tm_cos}
\end{equation}
Which is of time complexity \(\mathrm{O}(m \, n \, m_tn_t)\) – i.e. the size of the template times the size of the image. Depending on image and template sizes, the intended use case (e.g. batch vs. real-time) or scale of the template matching task (e.g. a couple dozen vs. thousands of images), this may incur in prohibitive processing costs.
Cosine similarity template matching can be sped up with application of the convolution theorem. First, let's redefine formula \eqref{eq:tm_cos} as:
\begin{equation}(i^*, j^*) = \arg \max_{i,j} \frac{D_{T, I}[i,j]}{\sqrt{m_T M_I[i,j]}}
\label{eq:tm_cos_2}
\end{equation}
Where:
\begin{equation}D_{T, I}[i,j] = \displaystyle\sum^{m_t,n_t}_{i_t,j_t} T[i_t,j_t] I[i + i_t, j + j_t]
\label{eq:D_TI}
\end{equation}
\begin{equation}
m_T = \displaystyle\sum^{m_t,n_t}_{i_t,j_t} T[i_t,j_t]^2
\label{eq:m_T}
\end{equation}
\begin{equation}
M_I[i,j] = \displaystyle\sum^{m_t,n_t}_{i_t,j_t} I[i + i_t, j + j_t]^2
\label{eq:M_I}
\end{equation}
Looking into the three terms above, it's clear that \eqref{eq:m_T} is constant for any given \(T\) and can therefore be left out of the computation. On the other hand, \eqref{eq:D_TI} is just the cross-correlation between \(T\) and \(I\), which by the convolution theorem can also be computed as:
\begin{equation}D_{T, I} = \mathcal{F}^{-1}(\mathcal{F}(T)^{*} \circ \mathcal{F}(I))
\end{equation}
Where \(\mathcal{F}\) is the fourier transform operator, \(\mathcal{F}^{-1}\) the inverse transform, the asterisk denotes the complex conjugate, and \(\circ\) is the Hadamard product (element-wise multiplication) of the two transforms. Likewise, \eqref{eq:M_I} can be computed as the cross-correlation between \(I^2\) and a window filter \(W^{m_t \times n_t} = [w_{ij} = 1]\):
\begin{equation}M_I = \mathcal{F}^{-1}(\mathcal{F}(W)^{*} \circ \mathcal{F}(I^2))
\end{equation}
The advantage of this approach is that algorithms such as the Fast Fourier Transform (FFT) are of time complexity \(\mathrm{O}(m \, n \, log \, m \, n)\), which depending on the relative sizes of \(T\) and \(I\) may be faster than the \(\mathrm{O}(m \, n \, m_t n_t)\) of the direct computation. Also the Fourier transforms of \(W\) and (if the same template will be applied to several images) \(T\) can be cached, further saving up computation time.
Implementation
The C++ code below provides a basic implementation of the method outlined above. It uses the popular OpenCV library, with some further optimizations particular to its implementation of the Fourier transform, explained in the comments.
#include <opencv2/opencv.hpp> static const cv::Scalar ONE(1); static const cv::Scalar ZERO(0); static const cv::Scalar WHITE(255, 255, 255); // Fourier transform performance is not a monotonic function of a vector // size - matrices whose dimensions are powers of two are the fastest to // process, and multiples of 2, 3 and 5 (for example, 300 = 5*5*3*2*2) are // also processed quite efficiently. Therefore it makes sense to pad input // data with zeros to get a bit larger matrix that can be transformed much // faster than the original one. cv::Size fit(const cv::Size &size) { return cv::Size(cv::getOptimalDFTSize(size.width), cv::getOptimalDFTSize(size.height)); } cv::Mat F_fwd(const cv::Mat &I, const cv::Size &size) { // Pad input matrix to given size. cv::Mat P; int m = size.height - I.rows; int n = size.width - I.cols; cv::copyMakeBorder(I, P, 0, m, 0, n, cv::BORDER_CONSTANT, ZERO); // Compute Fourier transform for input data. The last argument // informs the dft() function of how many non-zero rows are there, // so it can handle the rest of the rows more efficiently and save // some time. cv::Mat F; cv::dft(P, F, 0, I.rows); return F; } cv::Mat F_inv(const cv::Mat &F, const cv::Size &size) { // Compute inverse Fourier transform for input data. The last // argument informs the dft() function of how many non-zero // rows are expected in the output, so it can handle the rest // of the rows more efficiently and save some time. cv::Mat I; cv::dft(F, I, cv::DFT_INVERSE + cv::DFT_SCALE, size.height); return I(cv::Rect(0, 0, size.width, size.height)); } cv::Mat C(const cv::Mat &T, const cv::Mat &I, const cv::Size &size) { // Compute the Fourier transforms of template and image. cv::Mat F_T = F_fwd(T, size); cv::Mat F_I = F_fwd(I, size); // Compute the cross correlation in the frequency domain. cv::Mat F_TI; cv::mulSpectrums(F_I, F_T, F_TI, 0, true); // Compute the inverse Fourier transform of the cross-correlation, // dismissing those rows and columns of the cross-correlation // matrix that would require the template to "roll over" the image. cv::Size clipped; clipped.width = I.cols - T.cols; clipped.height = I.rows - T.rows; return F_inv(F_TI, clipped); } cv::Mat W(const cv::Mat &T) { return cv::Mat(T.size(), CV_64F, ONE); } cv::Point3f matchTemplate(const cv::Mat &T, const cv::Mat &I) { // Compute the optimal size for DFT computing. cv::Size size = fit(I.size()); //Compute the cross-correlation and normalizing matrix. cv::Mat C_TI = C(T, I, size); cv::Mat M_I = C(W(T), I.mul(I), size); int i_s, j_s; float r = 0; int rows = C_TI.rows; int cols = C_TI.cols; for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { float v = C_TI.at(i, j) / sqrt(M_I.at (i, j)); if (r < v) { r = v; i_s = i; j_s = j; } } } return cv::Point3f(j_s, i_s, r); } cv::Mat L(const cv::Mat &I) { cv::Mat L_I, L_F; cv::cvtColor(I, L_I, CV_BGR2GRAY); L_I.convertTo(L_F, CV_64F); return L_F; } int main(int argc, char *argv[]) { cv::Mat T = cv::imread(argv[1]); cv::Mat I = cv::imread(argv[2]); cv::Point3f match = matchTemplate(L(T), L(I)); cv::rectangle(I, cv::Rect(match.x, match.y, T.cols, T.rows), WHITE); cv::imshow("Template", T); cv::imshow("Image", I); cv::waitKey(); return 0; }